删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

融合多级语义特征的双通道GAN事件检测方法

本站小编 Free考研考试/2021-12-21

本文二维码信息
二维码(扫一下试试看!)
融合多级语义特征的双通道GAN事件检测方法
Double-Channel GAN with Multi-Level Semantic Correlation for Event Detection
投稿时间:2019-06-25
DOI:10.15918/j.tbit1001-0645.2019.177
中文关键词:语义相关性噪声多级门限注意力双通道GAN
English Keywords:semantic correlationnoisemulti-level gated attentiondouble-channel GAN
基金项目:国家“十二五”科技支撑计划项目(2012BAI10B01);北京理工大学基础研究基金项目(20160542013);国家“二四二”信息安全计划项目(2017A149)
作者单位E-mail
潘丽敏北京理工大学 信息与电子学院, 北京 100081
李筱雅北京理工大学 信息与电子学院, 北京 100081
罗森林北京理工大学 信息与电子学院, 北京 100081luosenlin2012@gmail.com
吴舟婷北京理工大学 信息与电子学院, 北京 100081
摘要点击次数:614
全文下载次数:272
中文摘要:
目前事件检测方法往往将句中事件视为独立个体,忽视了句子或文档内事件间的相关关系,且某些触发词在不同语境下可能触发不同事件,而多种语境下训练的词向量会引入与当前语境无语义关联的噪声.针对此问题,本文提出一种融合多级语义特征的双通道GAN事件检测方法,使用多级门限注意力机制获取句子级和文档级事件间的语义相关性,并利用双通道GAN及其自调节学习能力减轻噪声信息的影响,进而提高事件特征表示的准确性.在公开数据ACE2005英文语料上进行实验,F1值达到了77%,结果表明该方法能够有效获取事件间的语义相关性,并提高语境判定的准确性.
English Summary:
Event detection is an important task of information extraction. In recent years, it has been widely used in the fields of knowledge graph construction, information retrieval and intelligence research. For current event detection methods, events within one sentence are often identified as independent individuals, while the correlation among the events within one sentence or document is ignored. Besides, some triggers may trigger different events in different contexts, and the word vectors training in multiple contexts can introduce noise that is not semantically related to the current context. To solve the problems, a double-channel GAN with multi-level semantic correlation was proposed for event detection. Firstly, a multi-level gated attention mechanism was utilized to capture the semantic correlation among sentence-level events and document-level events. And then, a double-channel GAN with self-regulation learning was used to reduce noise and improve accuracy of the representation of event. Finally, some experiments on ACE2005 English corpus were carried out. The results show that, F1 score can achieve 77%, and the method can effectively obtain semantic correlation among multi-level events, and improve accuracy of context determination.
查看全文查看/发表评论下载PDF阅读器
相关话题/信息 北京理工大学 电子 北京 中文