删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于FLAKNN的雷达一维距离像目标识别

本站小编 Free考研考试/2021-12-21

本文二维码信息
二维码(扫一下试试看!)
基于FLAKNN的雷达一维距离像目标识别
Radar Range Profile Target Recognition Based on FLAKNN
投稿时间:2020-10-21
DOI:10.15918/j.tbit1001-0645.2020.181
中文关键词:KNNFisher判别分析局部分析目标识别一维距离像
English Keywords:KNNFisher discriminant analysislocal analysistarget recognitionrange profile
基金项目:国家部委基础科研资助项目(JCKY2017602C017)
作者单位
韩磊北京理工大学 机电学院, 北京 100081
周帅北京理工大学 机电学院, 北京 100081
摘要点击次数:379
全文下载次数:198
中文摘要:
由于传统KNN算法在应用于高分辨一维距离像进行目标识别时,存在全局使用固定k值和未考虑各特征分量对分类的影响等不足,使得目标识别性能较差.提出一种改进的KNN算法:FLAKNN.通过提取目标高分辨率一维距离像的尺寸、熵、中心距、不规则度、去尺度特征、对称度等稳定特征,使用Fisher判别分析将所有特征分量投影至低维空间,使不同类别间具备最大可分性;结合相邻样本局部的分布情况和k取值的调整,最终使用少数服从多数的投票原则决定测试样本的类别.结果表明,相对传统KNN算法,该算法进一步提升了识别性能.
English Summary:
Due to the deficiency of traditional KNN algorithm in target recognition of high range profile, such as using fixed k value globally and not considering the influence of each characteristic component on classification, the target recognition performance is poor. Therefore, an improved KNN algorithm-FLAKNN, was proposed. By extracting the stable characteristics such as the size, entropy, center distance, irregularity, scaling feature and symmetry of the high range profile of the target, Fisher discriminant analysis was used to project all feature components to the low-dimensional space, so as to achieve the maximum separability among different categories. Combined with the local distribution of adjacent samples and the adjustment of k value, the principle of majority voting was finally used to determine the category of test samples. The results show that compared with the traditional KNN algorithm, this algorithm further improves the recognition performance.
查看全文查看/发表评论下载PDF阅读器
相关话题/北京 北京理工大学 机电 中文 测试