 二维码(扫一下试试看!) | 基于改进LDA的在线医疗评论主题挖掘 | Identifying Topics of Online Healthcare Reviews Based on Improved LDA | 投稿时间:2018-04-13 | DOI:10.15918/j.tbit1001-0645.2019.04.015 | 中文关键词:主题抽取医疗服务语义稀疏CO-LDA词共现分析 | English Keywords:topic extractionhealthcare servicesemantic sparseCO-latent dirichlet allocationword co-occurrence analysis | 基金项目:国家自然科学基金资助项目(71572013) | | 摘要点击次数:1117 | 全文下载次数:290 | 中文摘要: | 对利用主题模型挖掘医疗服务主题进行了深入研究,针对LDA主题模型用于医疗评论主题挖掘中存在的语义稀疏、共现信息不足等问题,提出一种基于词共现分析与LDA主题模型结合的CO-LDA模型.首先使用词共现分析方法对评论语料库进行分析,得到词共现矩阵.其次利用LDA主题模型对语料评论进行建模表示,挖掘出患者对医疗服务的关注点.基于平均最小JS距离、平均肯德尔等级相关系数τb及平均TF-IDF 3个指标对比CO-LDA模型与传统LDA模型在医疗评论主题挖掘中的应用效果,实验最终表明CO-LDA模型识别主题的一致性和主题质量优于LDA模型.将实验结果与中国《医院评价标准》进行对比,一致性较高,说明基于CO-LDA的在线医疗评论主题挖掘方法的有效性. | English Summary: | An in-depth research was conducted on the use of topic models to identify the topics of healthcare services. In view of semantic sparseness and the lack of co-occurrence information in the special extraction of healthcare reviews in the LDA topic model, a CO-LDA model was proposed based on word co-occurrence analysis combined with LDA topic model. Firstly, the word co-occurrence analysis method was used to analyze the corpus of the review and the word co-occurrence matrix was obtained. Secondly, the LDA topic model was used to represent corpus reviews, and then the hierarchical clustering algorithm was used to classify the features. Finally, patients' focus on healthcare service quality factors was identified. Based on the average minimum JS distance, the average Kendall correlation coefficient and the average TF-IDF, in this paper the CO-LDA model was compared with the traditional LDA model. The experiment finally shows that the recognition theme consistency of CO-LDA model is better than that of the LDA model. Through the comparison of the experimental results with the "Hospital Evaluation Standards" in China, it is found that the consistency of the former was high, which explains the effectiveness of the CO-LDA-based online medical review topic mining method. | 查看全文查看/发表评论下载PDF阅读器 | |
杨诗雨,苏丽丽,侯元伟,郝永乐,李伟平.面向漏洞管理的工作流技术应用研究[J].北京理工大学学报(自然科学版),2019,39(9):967~973.YANGShi-yu,SULi-li,HOUYuan-wei,HAOYong-le,LIWei-ping.ResearchonWorkflowTech ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21余斌,李晓风,赵赫.基于区块链存储扩展的结构化数据管理方法[J].北京理工大学学报(自然科学版),2019,39(11):1160~1166.YUBin,LIXiao-feng,ZHAOHe.StructuredDataManagementMethodBasedonScalableBlockchai ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21孙宝升,曹正蕊,丁华.基于中继卫星多址支持的卫星在轨健康管理模式[J].北京理工大学学报(自然科学版),2019,39(11):1203~1206.SUNBao-sheng,CAOZheng-rui,DINGHua.AConceptofSatellites’HealthManagementBased ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21.北京理工大学学报2019年总目次(第39卷)[J].北京理工大学学报(自然科学版),2019,39(12):1321~1338..[J].TransactionsofBeijingInstituteofTechnology,2019,39(12):1321-1338.二维码(扫一下试试看!)北京理 ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21.北京理工大学学报2018年总目次(第38卷)[J].北京理工大学学报(自然科学版),2018,38(12):1321~1338..[J].TransactionsofBeijingInstituteofTechnology,2018,38(12):1321-1338.二维码(扫一下试试看!)北京理 ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21武小花,邹渊,阴晓峰,张龙.基于插电式电动汽车储能的智能家居动态规划能量管理策略[J].北京理工大学学报(自然科学版),2017,37(1):56~60.WUXiao-hua,ZOUYuan,YINXiao-feng,ZHANGLong.DynamicEnergyProgrammingManagem ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21王向周,闫贺龙,郑戍华.液压泵寿命的在线预测与健康管理[J].北京理工大学学报(自然科学版),2017,37(10):1024~1030.WANGXiang-zhou,YANHe-long,ZHENGShu-hua.On-LineLifePredictionandHealthManagementof ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21早期帝国国家管理与书写中国人民大学国学院出版日期:2021-11-16发布日期:2021-11-26作者简介:张瀚墨,中国人民大学国学院教授Online:2021-11-16Published:2021-11-26摘要/Abstract摘要:[主持人语]秦汉早期帝国是中国历史上一个承上启下的重要时期 ... 中国人民大学科研学术 本站小编 Free考研考试 2021-12-21秦汉王朝对乡里族姓的规划与管理北京师范大学历史学院出版日期:2021-11-16发布日期:2021-11-26作者简介:凌文超,北京师范大学历史学院副教授AStudyonArrangingandGoverningHouseholdsattheXiangandLiLevelsduringtheQina ... 中国人民大学科研学术 本站小编 Free考研考试 2021-12-21中国医疗保障制度改革与发展中国人民大学中国社会保障研究中心出版日期:2020-09-16发布日期:2020-09-29Online:2020-09-16Published:2020-09-29摘要/Abstract摘要:疾病是人生难以避免的风险,健康是最具普遍意义的民生诉求,医疗保障则是化解人民群众 ... 中国人民大学科研学术 本站小编 Free考研考试 2021-12-21
| |