删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

人眼检测的混合加权特征方法

本站小编 Free考研考试/2021-12-21

本文二维码信息
二维码(扫一下试试看!)
人眼检测的混合加权特征方法
Mixed Weighted Feature Method for Human Eye Detection
投稿时间:2018-10-26
DOI:10.15918/j.tbit1001-0645.2019.08.008
中文关键词:眼动跟踪目视瞄准人眼检测混合加权
English Keywords:eye movement trackingeye gaze targetinghuman eye detectionmixed weighting
基金项目:国家部委基础科研计划项目(JCKY2017602C016)
作者单位
王建中北京理工大学 爆炸科学与技术国家重点实验室, 北京 100081
张广月北京华航无线电测量研究所 光电技术研究室, 北京 100013
王虹93756部队, 天津 300131
摘要点击次数:840
全文下载次数:522
中文摘要:
基于眼动跟踪的目视瞄准技术可使无人武器的目标跟踪瞄准操控摆脱对肢体的需求,是未来无人武器的重要操控方式.提出一种混合加权特征方法,通过Gabor算子滤波、计算积分图、引入局部区域方差作为权重对混合特征编码进行加权运算并与级联分类器训练结合,获得人眼区域检测.试验结果表明,本文方法优于常用的Haar-like、LDP方法,并且随着级数的增加误检率呈下降趋势.该方法可提高人眼检测率、降低误检率,为满足无人武器目视瞄准对实时性和准确率的要求提供可能的技术途径.
English Summary:
Eye gaze targeting technology based on eye movement tracking can free target tracking and aiming control of unmanned weapons from the need for limbs and make it possible to "attack whatever is seen", which is an important control mode of unmanned weapons in the future. A mixed weighted feature method was proposed in this paper. Human eye region detection was obtained through Gabor operator filtering, integral graph calculation, introducing local region variance as weight to weight mixed feature codes and combining it with cascade classifier training. The experimental results show that the method in this paper is better than the commonly used Haar-like and LDP methods, and the false detection rate shows a downtrend with the increase of series. This method can enhance the detection rate of human eyes and reduce false detection rate, providing a possible technical way to meet the requirements of real-time and accuracy of unmanned weapon eye gaze targeting.
查看全文查看/发表评论下载PDF阅读器
相关话题/技术 北京 研究所 天津 中文