删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

变工况时频脊流形早期故障预警方法研究

本站小编 Free考研考试/2021-12-21

本文二维码信息
二维码(扫一下试试看!)
变工况时频脊流形早期故障预警方法研究
Time-Frequency Ridge Manifold Early Fault Warning on Variable Conditions
投稿时间:2017-01-13
DOI:10.15918/j.tbit1001-0645.2017.09.011
中文关键词:变工况时频脊流形学习早期故障预警
English Keywords:variable conditiontime-frequency ridgemanifold learningearly failure warning
基金项目:国家自然科学基金资助项目(51275052,51575055);北京市自然基金重点项目(3131002);国家“八六三”计划项目(2015AA043702);“高档数控机床与基础制造装备”科技重大专资助项目(2015ZX04001002)
作者单位E-mail
孟玲霞北京理工大学 机械与车辆学院, 北京 100081
北京信息科技大学 现代测控技术教育部 重点实验室, 北京 100192
徐小力北京理工大学 机械与车辆学院, 北京 100081
北京信息科技大学 现代测控技术教育部 重点实验室, 北京 100192
xuxiaoli@bistu.edu.cn
徐杨梅北京信息科技大学 现代测控技术教育部 重点实验室, 北京 100192
王红军北京信息科技大学 现代测控技术教育部 重点实验室, 北京 100192
摘要点击次数:571
全文下载次数:786
中文摘要:
针对风电机组齿轮箱工况复杂多变,提出了一种基于Gabor重排对数时频脊流形早期故障预警方法.该方法首先研究提取Gabor重排对数时频谱的脊线,构建早期故障高维特征向量;然后研究改进局部切空间流形学习方法,进行维数约简;最后采用K-近邻分类器,实现变工况风电机组齿轮箱的早期故障识别与预警.通过变转速、变载荷等多种工况的行星齿轮箱磨损试验与风电机组现场运行数据验证,结果表明该方法有效提高了复杂变工况风电机组齿轮箱早期故障预警准确率,可为其预知维护提供可靠依据.
English Summary:
Aiming at the complex working conditions of wind turbine gearbox, a new early fault warning method was proposed based on the Gabor rearrangement logarithmic time-frequency ridges manifold. Firstly, the ridges of Gabor rearrangement logarithmic time-frequency spectrum were extracted and the high dimensional early fault feature vector was built. Then, LTSA (local tangent space alignment) manifold learning method was studied and improved to achieve the reduction of high dimensional feature vector. Finally, the K-nearest neighbor classifier was applied to complete the early fault identification and warning of variable conditional wind turbine gear box. Many experiments were carried out to get verifying data from different condition, including variable speed, load working conditions of planetary gearbox and wind turbine operation filed. The results show that the proposed method can improve the early fault warning accuracy of wind turbine gearbox that works under complex non-stationary conditions, and can provide a reliable basis for predictive maintenance.
查看全文查看/发表评论下载PDF阅读器
相关话题/北京 技术 测控 北京信息科技大学 北京理工大学