[1] Jin B, Lazarov R, Pasciak J and Zhou Z. Galerkin FEM for Fractional Order Parabolic Equations with Initial Data in H-s, 0< s ≤ 1. Lecture Notes in Computer Science, 2013, 24-37.[2] Travis C and Webb G. Cosine families and abstract nonlinear second order differential equations[J]. Acta Mathematica Academiae Scientiaum Hungaricae, 1978, 32:75-96.[3] Prévôt C and Röckner R. A concise course on stochastic partial differential equations. Berlin:2007, vol. 1905 of Lecture Notes in Mathematics, Springer.[4] Cohen D and Sigg M. Convergence analysis of trigonometric methods for stiff second-order stochastic differential equations[J]. Numerische Mathematik, 2012, 121:1-29.[5] Cohen D, Larsson S and Sigg M. A trigonometric method for the linear stochastic wave equation[J]. SIAM J. Numer. Anal., 2013, 51:204-222.[6] Lutz D. On bounded time-dependent perturbations of operator cosine functions. Aequationes Mathematicae, 1981, 23:197-203.[7] Allen E, Novosel S and Zhang Z. Finite element and difference approximation of some linear stochastic partial differential equations[J]. Stoch. Stoch. Rep., 1998, 64(1-2):117-142.[8] Baker G and Bramble J. Semidiscrete and single step full discrete approximations for second order hyperbolic equations[J]. RAIRO Numer. Anal., 1979, 13:75-100.[9] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge University Press, Cambridge, 1992.[10] Lord G and Tambue A. Stochastic exponential integrators for the finite element discretization of SPDEs for multiplicative and additive noise[J]. IMA J. Numer. Anal., 2012, 1-29.[11] Fujita H and Suzuki T. Evolutions problems (part1). in:P. G. Ciarlet, J. L. Lions (Eds.) Handbook of Numerical Analysis, vol II, North-Holland, Amsterdam, 1991, 789-928.[12] J. Printems. On the discretization in time of parabolic stochastic partial differential equations. Esaim Mathematical Modelling and Numerical Analysis, 2001, 1055-1078.[13] Quer-Sardanyons L and Sanz-Solé M. Space semi-discretisations for a stochastic wave equation[J]. Potential Anal., 2006, 24:303-332.[14] Palla M, Sofi A and Muscolino G. Nonlinear random vibrations of a suspended cable under wind loading. Proceedings of Fourth International Conference on Computational Stochstic Mechanics(CSM4), 2002, 159-168.[15] Pazy A. Semigroups of linear operators and applications to partial differential equations. SpringerVerlag, Berlin, 1983.[16] Kovács M, Larsson S and Lindgren F. Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise[J]. BIT Number.Math., 2012, 52(1):85-108.[17] Walsh J B. On numerical solutions of the stochastic wave equation[J]. Illinois J. Math., 2006, 50:991-1018.[18] Kovács M, Larsson S and Saedpanah F. Finite element approximation of the linear stochastic wave equation with additive noise[J]. SIAM J. Numer. Anal., 2010, 48(2):408-427.[19] Ciarlet P. The finite element method for elliptic problems. North-Holland:1978.[20] Du Q and Zhang T. Numerical approximation of some linear stochastic partial differential equations driven by special additive noise[J]. SIAM J. Numer. Anal., 2002, 40:1421-1445.[21] Anton R, Cohen D, Larsson S and Wang X. Full discretisation of semi-linear stochastic wave equations driven by multiplicative noise[J]. SIAM J. Numer. Anal., arXiv:1503.00073v1.[22] Dalang R, Khoshnevisan D, Mueller C, Nualart D and Xiao Y. A minicourse on stochastic partial differential equation. Berlin:2009, vol.1962 of Lecture Notes in Mathematics, Springer-Verlag.[23] Larsson S. Nonsmooth data error estimates with applications to the study of longtime behavior of finite element solutions of semilinear parabolic problems. 1992.[24] Georgios T, Georgios E. Fully-discrete finite element approximations for a fourth-order linear stochastic parabolic equation with additive space-time white noise. ESAIM:Mathematical Modelling and Numerical Analysis, 2010, 44:289-322.[25] Thomée V. Galerkin finite element methods for parabolic problems. 2006, volume 25 of Springer Series in Computational Mathematics, Springer-Verlag:Berlin.[26] Wang X. An exponential integrator scheme for time discretization of nonlinear stochastic wave equation[J]. Journal of Scientific Computing, 2014, 64:234-263.[27] Yang X, Li X, Qi R and Zhang Y. Full-discrete finite element method for stochastic hyperbolic equation[J]. Journal of Computational Mathematics, 2015, 33(5):533-556.[28] Yan Y. Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise[J]. BIT Numer. Math., 2004, 44:829-847.[29] Yan Y. Galerkin finite element methods for stochastic parabolic partial differential equations[J]. SIAM J. Numer. Anal., 2005, 43(4):1363-1384. |