删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

时骁霖 博士:The Slice Spectral Sequence of a $C_4$-equivariant height 4 Lubin—Tate theory

本站小编 Free考研考试/2021-12-26



Academy of Mathematics and Systems Science, CAS
Colloquia & Seminars

Speaker: 时骁霖 博士,University of Chicago
Inviter:
Title:
The Slice Spectral Sequence of a $C_4$-equivariant height 4 Lubin—Tate theory
Time & Venue:
2021.07.02 09:30-11:30 南楼N802室 腾讯会议:764 508 461
Abstract:
I will talk about the slice spectral sequence of a $C_4$-equivariant spectrum. This spectrum is a variant of the detection spectrum that Hill-Hopkins-Ravenel used in the proof of the Kervaire invariant problem. After periodization and K(4)-localization, this spectrum is equivalent to a height-4 Lubin-Tate theory $E_4$ with $C_4$-action induced from the Goerss-Hopkins-Miller theorem. In particular, our computation shows that $E_4^{hC_12}$ is 384-periodic. This is joint work with Mike Hill, Guozhen Wang, and Zhouli Xu.

相关话题/博士 腾讯 会议