何向南 导师介绍
姓名
何向南
工作单位
中国科学技术大学先进技术研究院/中国科学技术大学信息学院
学位/职称
博士/教授
办公室电话
Email
hexn@ustc.edu.cn
教育背景
Sep 2007 - June 2011, Bachelor in Software Engineering, East China Normal University (ECNU), Shanghai, China
July 2011 - April 2016, Ph.D. in Computer Science, National University of Singapore (NUS), Singapore
研究方向
My research interests span information retrieval, data mining, and multi-media analytics. I have over 60 publications appeared in several top conferences such as SIGIR, WWW, KDD, and MM, and journals including TKDE, TOIS, and TMM. My work on recommender systems has received the Best Paper Award Honourable Mention in WWW 2018 and ACM SIGIR 2016. Moreover, I have served as the (senior) PC member for several top conferences including SIGIR, WWW, KDD, MM etc., and the regular reviewer for journals including TKDE, TOIS, TMM, etc.
任职经历
Sep 2007 - June 2011,Bachelor in Software Engineering,East China Normal University (ECNU),Shanghai, China
July 2011 - April 2016,Ph.D. in Computer Science,National University of Singapore (NUS), Singapore
主持、参与项目
个人获奖
代表性论著
[01] Wang X, He X, Wang M, et al. Neural Graph Collaborative Filtering[C].SIGIR 2019.
[02] Xin X, He X, Zhang Y, et al. Relational Collaborative Filtering: Modeling Multiple Item Relations for Recommendation[C]. SIGIR 2019.
[03] Yang X, He X, Wang X, et al. Interpretable Fashion Matching with Rich Attributes[C]. SIGIR 2019.
[04] Wang X, He X, Cao Y, et al. KGAT: Knowledge Graph Attention Network for Recommendation[C]. KDD 2019
[05] Hu H, He X. Sets2Sets: Learning from Sequential Sets with Neural Networks[C].KDD 2019.
[06] Chen Y, Chen B, He X, et al. Lambda Opt: Learn to Regularize Recommender Models in Finer Levels[C]. KDD 2019.
[07] Ding D, Zhang M, Pan X, et al. Modeling Extreme Events in Time Series Prediction[C]. KDD 2019.
[08] Ding J, Quan Y, He X, et al.Reinforced Negative Sampling for Recommendation with Exposure Data[C]. IJCAI 2019.
[09] Xin X, Chen B, He X, et al. CFM: Convolutional Factorization Machines for Context-Aware Recommendation[C].IJCAI 2019
[10] Chen L, Liu Y, He X, et al. Matching User with Item Set: Collaborative Bundle Recommendation with Attention Network[C].IJCAI 2019.
[11] Feng F, Chen H, He X, et al.EnhancingStock Movement Prediction with Adversarial Training[C]. IJCAI 2019.
[12] Chen W, Gu Y, Ren Z, et al. Semi-supervised User Profiling with Heterogeneous Graph Attention Networks[C]. IJCAI 2019.
[13] Cao Y, Wang X, He X, et al. Unifying Knowledge Graph Learning and Recommendation: Towards a Better Understanding of User Preferences[C]//WWW 2019: 151-161.
[14] Gao C, Chen X, Feng F, et al. Cross-domain Recommendation Without Sharing User-relevant Data[C]//WWW 2019: 491-502.
[15] Wang X, Wang D, Xu C, et al. Explainable Reasoning over Knowledge Graphsfor Recommendation[C]. AAAI 2019.
[16] Li X, Song J, Gao L, et al. Beyond RNNs: Positional Self-Attention with Co-Attention for Video Question Answering[C]. AAAI 2019.
[17] Yuan F, Karatzoglou A, Arapakis I, et al. A Simple Convolutional Generative Network for Next Item Recommendation[C]//WSDM 2019: 582-590.
[18] Gao C, He X, Gan D, et al. Neural Multi-Task Recommendation from Multi-Behavior Data[C]//ICDE (Short).2019.
[19] Feng F, He X, Tang J, et al. Graph Adversarial Training: DynamicallyRegularizing Based on Graph Structure[J]. IEEE Transactions on Knowledge andData Engineering (TKDE, under submission).
[20] Gao M, He X, Chen L, et al. Learning Vertex Representations for Bipartite Networks[J]. IEEE Transactions on Knowledge and Data Engineering (TKDE, undersubmission).
[21] Gao X, Feng F, He X, et al. Visually-aware Collaborative Food Recommendation[J]. IEEE Transactions on Multimedia (TMM, under submission).
[22] Hong R, Liu D, Mo X, et al. Learning to Compose and Reason with LanguageTree Structures for Visual Grounding[J]. IEEE transactions on pattern analysisand machine intelligence 2019.
[23] Feng F, He X, Wang X, et al. Temporal Relational Ranking for Stock Prediction[J].ACM Transactions on Information Systems (TOIS) 2019, 37(2): 27.
[24] Guan X, Cheng Z, He X, et al. Attentive Aspect Modeling for Review-aware Recommendation[J]. ACM Transactions on Information Systems (TOIS) 2019, 37(3):28.
[25] He X, Tang J, Du X, et al.Fast Matrix Factorization with Non-Uniform Weights on Missing Data[J]. IEEE Transactions on Neural Networks and Learning Systems (TNNLS) 2019
[26] Tang J, Du X, He X, et al. Adversarial training towards robust multimedia recommender system[J]. IEEE Transactions on Knowledge and Data Engineering (TKDE) 2019.
[27]Ding J, Yu G, He X, et al. SamplerDesign for Bayesian Personalized Ranking by Leveraging View Data[J]. IEEETransactions on Knowledge and Data Engineering (TKDE, Major Revision) 2019
[28] Liu Y, Li Z, Zhou C, et al. Generative adversarial active learning for unsupervised outlier detection[J]. IEEE Transactions on Knowledge and Data Engineering (TKDE) 2019.
[29] Xue F, He X, Wang X, et al. Deep Item-based Collaborative Filtering for Top-N Recommendation[J]. ACM Transactions on Information Systems (TOIS) 2019,37(3): 33.
[30] He X, He Z, Du X, et al. Adversarial personalized ranking for recommendation[C]// SIGIR 2018: 355-364.
[31] Gao M, Chen L, He X, et al. BiNE: Bipartite Network Embedding[C]//SIGIR 2018: 715-724.
[32] Cao D, He X, Miao L, et al. Attentive group recommendation[C]//SIGIR 2018: 645-654.
[33] Luo X, Nie L, He X, et al. Fast Scalable Supervised Hashing[C]//SIGIR 2018: 735-744.
[34] Song X, Wang X, Nie L, et al. A Personal Privacy Preserving Framework: ILet You Know Who Can See What[C]//SIGIR 2018: 295-304.
[35] Liu M, Wang X, Nie L, et al. Attentive moment retrieval in videos[C]// SIGIR 2018: 15-24.
[36] Liao L, Ma Y, He X, et al. Knowledge-aware Multimodal Dialogue Systems[C]//MM 2018:801-809.(Best Paper Final List)
[37] Gelli F, Uricchio T, He X, et al. Beyond the Product: Discovering Image Posts for Brands in Social Media[C]//MM 2018.
[38] Liao L, He X, Zhao B, et al. Interpretable multimodal retrieval for fashion products[C]//MM 2018
[39] Yu W, Zhang H, He X, et al. Aesthetic-based clothing recommendation[C]//WWW 2018 (Best Paper Award Honorable Mention)
[40] Wang X, He X, Feng F, et al. Tem: Tree-enhanced embedding model for explainable recommendation[C]//WWW 2018 : 1543-1552.
[41] Feng F, He X, Liu Y, et al. Learning on partial-order hypergraphs[C]//WWW 2018:1523-1532.
[42] Ding J, Feng F, He X, et al. An improved sampler for bayesian personalized ranking by leveraging view data[C]//WWW 2018 (Poster): 13-14.(Best Poster Award)
[43] Yuan F, Xin X, He X, et al. fBGD: Learning embeddings from positive unlabeled data with BGD[C]. UAI 2018.
[44] He X, Du X, Wang X, et al. Outer product-based neural collaborative filtering[C]. IJCAI 2018.
[45] Liu H, He X, Feng F, et al. Discrete factorization machines for fastfeature-based recommendation[C]. IJCAI 2018.
[46] Ding J, Yu G, He X, et al. Improving Implicit Recommender Systems with View Data[C]//IJCAI 2018: 3343-3349.
[47] Cheng Z, Ding Y, He X, et al. A^ 3NCF: An Adaptive Aspect Attention Modelfor Rating Prediction[C]//IJCAI 2018: 3748-3754.
[48] Shen T, Jia J, Shen G, et al. Cross-Domain Depression Detection via Harvesting Social Media[C]//IJCAI 2018: 1611-1617.
[49] Xin X, Yuan F, He X, et al. AllVec: Learning Word Representations Without Negative Sampling[C]. ACL 2018.
[50] Lei W, Jin X, Kan M Y, et al. Sequicity: Simplifying task-oriented dialogue systems with single sequence-to-sequence architectures[C]//ACL 2018: 1437-1447.
[51] Liao L, He X, Zhang H, et al. Attributed social network embedding[J].IEEE Transactions on Knowledge and Data Engineering (TKDE) 2018, 30(12): 2257-2270.
[52] Zhang D, Guo L, He X, et al. A graph-theoretic fusion framework for unsupervised entity resolution[C]//2018 IEEE 34th International Conference onData Engineering (ICDE). IEEE, 2018: 713-724.
[53] He X, He Z, Song J, et al. NAIS: Neural attentive item similarity model for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering (TKDE) 2018, 30(12): 2354-2366.
[54] Chen J, He X, Song X, et al. Venue prediction for social images by exploiting rich temporal patterns in lbsns[C]/MMM 2018 (Poster): 327-339.
[55] Gao Z, Wang D, He X, et al. Group-pair convolutional neural networks formulti-view based 3d object retrieval[C]//AAAI 2018.
[56] He X, Chua T S. Neural factorization machines for sparse predictive analytics[C]/ SIGIR 2017: 355-364.
[57] Wang X, He X, Nie L, et al. Item silk road: Recommending items from information domains to social users[C]// SIGIR 2017: 185-194.
[58] Chen J, Zhang H, He X, et al.Attentive Collaborative Filtering: Multimedia Recommendation with Feature- and Item-levelAttention[C]. SIGIR 2017.
[59] Cao D, Nie L, He X, et al. Embedding factorization models for jointly recommending items and user generated lists[C]//SIGIR 2017: 585-594.
[60] Gelli F, He X, Chen T, et al. How personality affects our likes: Towardsa better understanding of actionable images[C]//MM 2017: 1828-1837.
[61] Nie L, Wang X, Zhang J, et al. Enhancing micro-video understanding byharnessing external sounds[C]//MM 2017: 1192-1200.
[62] Xu D, Zhao Z, Xiao J, et al. Video question answering via gradually refined attention over appearance and motion[C]//MM 2017: 1645-1653.
[63] Liu Z, Cheng L, Liu A, et al. Multiview and multimodal pervasive indoor localization[C]//MM 2017: 109-117.
[64] Zhu L, Huang Z, Liu X, et al. Discrete multi-modal hashing with canonicalviews for robust mobile landmark search[J]. IEEE Transactions on Multimedia(TMM) 2017, 19(9): 2066-2079.
[65] Xiao J, Ye H, He X, et al. Attentional factorization machines: Learningthe weight of feature interactions via attention networks[C]. IJCAI 2017.
[66] Liao L, He X, Ren Z, et al. Representativeness-aware Aspect Analysis for Brand Monitoring in Social Media[C]//IJCAI. 2017: 310-316.
[67] Lei W, Wang X, Liu M, et al. SWIM: A Simple Word Interaction Model for Implicit Discourse Relation Recognition[C]//IJCAI. 2017: 4026-4032.
[68] He X, Liao L, Zhang H, et al. Neural collaborativefiltering[C]//WWW 2017:173-182.
[69] Bayer I, He X, Kanagal B, et al. A generic coordinate descent frame workfor learning from implicit feedback[C]//WWW 2017: 1341-1350.
[70] He X, Gao M, Kan M Y, et al. Birank: Towards ranking on bipartite graphs[J]. IEEE Transactions on Knowledge and Data Engineering,(TKDE) 2016, 29(1):57-71.
[71] Cao D, He X, Nie L, et al. Cross-platform app recommendation by jointly modeling ratings and texts[J]. ACM Transactions on Information Systems (TOIS) 2017, 35(4): 37.
[72] Cao D, Nie L, He X, et al. Version-sensitive mobile Apprecommendation[J]. Information Sciences, 2017, 381: 161-175.
[73] He X, Zhang H, Kan M Y, et al. Fast matrix factorization for online recommendation with implicit feedback[C]//SIGIR 2016: 549-558.
[74] Zhang H, Shen F, Liu W, et al. Discrete collaborative filtering[C]//SIGIR 2016: 325-334.(Best Paper Award Honorable Mention)
[75] Chen T, He X, Kan M Y. Context-aware image tweet modelling and recommendation[C]//MM 2016: 1018-1027.
[76] Zhang J, Nie L, Wang X, et al. Shorter-is-better: Venue category estimation from micro-video[C]//MM 2016: 1415-1424.
[77] He X, Chen T, Kan M Y, et al. Trirank: Review-aware explainable recommendation by modeling aspects[C]//CIKM 2015:1661-1670.
[78] Chen T, SalahEldeen H M, He X, et al. VELDA: Relating an Image Tweet's Text and Images[C]//AAAI. 2015: 30-36.
[79] He X, Gao M, Kan M Y, et al. Predicting the popularity of web 2.0 itemsbased on user comments[C]//SIGIR 2014:233-242.
[80] He X, Kan M Y, Xie P, et al. Comment-based multi-view clustering of web2.0 items[C]//WWW 2014: 771-782.
[81] Jin Y, Kan M Y, Ng J P, et al. Mining scientific terms and their definitions: A study of the ACL anthology[C]//EMNLP 2013: 780-790.
[82] Gao M, He X, Jin C, et al. Recording how-provenance on probabilistic databases[C]//APWEB 2010:205-211.
[83] Xu J, He X, Li H. Deep learning for matching in search and recommendation[C]//SIGIR 2018: 1365-1368.
[84]Ren Z, He X, Yin D, et al. InformationDiscovery in E-commerce[C]. SIGIR 2018
[85] Xu J, He X, Li H. Deep learning for matching in search and recommendation[C]//SIGIR 2018: 1365-1368.
[86] He X, Zhang H, Chua T S. Recommendation Technologies for Multimedia Content[C]//ICMR. 2018: 8.
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
中国科学技术大学先进技术研究院导师教师师资介绍简介-何向南
本站小编 Free考研考试/2021-04-24
相关话题/中国科学技术大学
中国科学技术大学先进技术研究院导师教师师资介绍简介-李厚强
李厚强导师介绍姓名李厚强工作单位中国科学技术大学先进技术研究院/中国科学技术大学信息学院学位/职称教授办公室电话Emaillihq@ustc.edu.cn教育背景1987/09~1992/07中国科技大学,电子工程与信息科学系学士学位1994/09~1997/07中国科技大学,电子工程与信息科学系硕 ...中国科学技术大学师资导师 本站小编 Free考研考试 2021-04-24中国科学技术大学先进技术研究院导师教师师资介绍简介-吴枫
吴枫导师介绍姓名吴枫工作单位中国科学技术大学先进技术研究院/中国科学技术大学信息科学技术学院学位/职称教授办公室电话Emailfengwu@ustc.edu.cn教育背景1988/09~1992/07西安电子科技大学(电子工程专业)学士1994/09~1996/07哈尔滨工业大学(模式识别与自动控制 ...中国科学技术大学师资导师 本站小编 Free考研考试 2021-04-24中国科学技术大学先进技术研究院导师教师师资介绍简介-孙晓艳
孙晓艳导师介绍姓名孙晓艳工作单位中国科学技术大学先进技术研究院/中国科学技术大学信息学院学位/职称博士/教授办公室电话Emailsunxiaoyan@ustc.edu.cnHomepage:http://staff.ustc.edu.cn/~xysun720/教育背景1993/09~1997/07哈 ...中国科学技术大学师资导师 本站小编 Free考研考试 2021-04-24中国科学技术大学先进技术研究院导师教师师资介绍简介-张勇东
张勇东导师介绍姓名张勇东工作单位中国科学技术大学先进技术研究院/中国科学技术大学信息科学技术学院学位/职称博士/教授办公室电话Emailzhyd73@ustc.edu.cn教育背景(1)1999.3-2002.3,天津大学,博士(2)1995.9-1998.3,大连理工大学,硕士(3)1991.9- ...中国科学技术大学师资导师 本站小编 Free考研考试 2021-04-24中国科学技术大学先进技术研究院导师教师师资介绍简介-赵峰
赵峰导师介绍姓名赵峰工作单位中国科学技术大学先进技术研究院/中国科学技术大学信息科学技术学院学位/职称教授办公室电话0551-63603561Emailfzhao956@ustc.edu.cn教育背景1995.9-2000.6,中国科学技术大学电子工程与信息科学系本科2000.8-2002.7,香港 ...中国科学技术大学师资导师 本站小编 Free考研考试 2021-04-24中国科学技术大学先进技术研究院导师教师师资介绍简介-封常青
封常青导师介绍姓名封常青工作单位中国科学技术大学先进技术研究院/中国科学技术大学物理学院/核探测与核电子学国家重点实验室学位/职称博士/副教授办公室电话Emailfengcq@ustc.edu.cn教育背景2001.9–2006.7:本科,中国科学技术大学物理学院2006.9–2011.6:硕博连读 ...中国科学技术大学师资导师 本站小编 Free考研考试 2021-04-24中国科学技术大学先进技术研究院导师教师师资介绍简介-周文罡
周文罡导师介绍姓名周文罡工作单位中国科学技术大学先进技术研究院/中国科学技术大学信息学院学位/职称博士/教授办公室电话Emailzhwg@ustc.edu.cn教育背景2002年9月~2006年7月,武汉大学,获电子信息工程专业学士学位。2006年9月~2011年7月,中国科学技术大学,获信号与信息 ...中国科学技术大学师资导师 本站小编 Free考研考试 2021-04-24中国科学技术大学先进技术研究院导师教师师资介绍简介-孙启彬
孙启彬导师介绍姓名孙启彬联系地址中国科学技术大学先进技术研究院/中国科学技术大学网络空间安全学院学位/职称博士/研究院院长,教授,IEEEFellow办公室电话Emailqibinsun@ustc.edu.cn教育背景1997年在中国科学技术大学获得博士学位研究方向多媒体(视频,图像,音频)安全、网 ...中国科学技术大学师资导师 本站小编 Free考研考试 2021-04-24中国科学技术大学先进技术研究院导师教师师资介绍简介-刘树彬
刘树彬导师介绍姓名刘树彬工作单位中国科学技术大学先进技术研究院/中国科学技术大学物理学院学位/职称博士/教授办公室电话Emailliushb@ustc.edu.cn教育背景1993.09~1997.07,中国科学技术大学近代物理系,核技术,本科/学士;1997.09~2002.07,中国科学技术大学 ...中国科学技术大学师资导师 本站小编 Free考研考试 2021-04-24中国科学技术大学先进技术研究院导师教师师资介绍简介-杨坚
杨坚导师介绍姓名杨坚工作单位中国科学技术大学先进技术研究院/中国科学技术大学信息学院学位/职称博士/教授办公室电话无Emailjianyang@ustc.edu.cn教育背景2001.9-2005.12中国科学技术大学博士1996.9-2001.7中国科学技术大学本科研究方向未来智能网络体系架构网络 ...中国科学技术大学师资导师 本站小编 Free考研考试 2021-04-24