删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

安徽大学数学科学学院导师教师师资介绍简介-陈正争副教授

本站小编 Free考研考试/2021-04-18

基本信息 陈正争 副教授


联系方式 地址:磬苑校区理工H楼414室
电话:
邮件:chenzzandu@163.com



个人简介 陈正争,男,武汉大学博士,副教授,硕士生导师

主要研究方向 1. 流体力学中的偏微分方程理论;
2. 双曲型守恒律方程。


教学情况 为本科生开设课程: 偏微分方程,泛函分析, 线性代数,概率论与数理统计。
为研究生开设课程: 广义函数与Sobolev空间,双曲型守恒律方程,现代偏微分方程理论,非线性发展方程。


科研情况 近年来,主要从事流体力学中的几类非线性偏微分方程定解问题的适定性及其解的渐近行为研究。
目前主持国家自然科学基金青年项目、国家自然科学基金数学天元项目、安徽省自然科学基金青年项目、安徽大学博士科研启动项目和安徽大学青年骨干教师培养对象项目各一项。
发表的主要论文如下:
[16]Zhengzheng Chen, Yeping Li, Asymptotic behavior of solutions toan impermeable wall problem ofthe compressible fluid models of Korteweg type with density-dependent viscosity and capillarity,SIAM Journal on Mathematical Analysis,53 (2)(2021), 1434-1473.
[15] Zhengzheng Chen, Di Wang, Global stability of rarefaction waves for the 1D compressible micropolar fluid model with density-dependent viscosity and microviscosity coefficients, Nonlinear Analysis: Real World Applications,58(2021) ,103226.
[14] Zhengzheng Chen, Huijiang Zhao, Asymptotics of the 1D compressible Navier-Stokes equations with density-dependent viscosity, Journal of Differential Equations, 269(2020), 912-953.
[13]Zhengzheng Chen,Mengdi Sheng, Global stability of a combination of a viscous contactwith rarefaction wavesfor the compressible fluid models of Korteweg,Nonlinearity, 32,(2019), 395-444.
[12]Zhengzheng Chen,Lin He, Huijiang Zhao, Global smooth solutions to the nonisothermal compressible fluid models of Korteweg type with large initial data,Zeitschriftfür angewandte Mathematik and Physik,68 (2017), No. 79.
[11]Zhengzheng Chen,Large-time behavior of smoothsolutions to the isothermal compressible fluid models of Korteweg type with large initial data,Nonlinear Analysis, 144(2016), 139-156.
[10]Zhengzheng Chen, Xiaojuan Chai, Wenjuan Wang, Convergence rate of solutions to strong conatct discontinuity for the one-dimensional compressible radiation hydrodynamics model,Acta Mathematica Scientia, 36B (1) (2016),265-282.
[9]Zhengzheng Chen, Xiaojuan Chai, Boqing Dong, Huijiang Zhao, Global classical solutions to the one-dimensional compressible fluid models of Korteweg type with large initial data,Journal of Differential Equations, 259 (2015), 4376-4411.
[8]Zhengzheng Chen, Huijiang Zhao, Existence and nonlinear stability of stationary solutions to the full compressible Navier-Stokes-Korteweg system,Journal de Mathematiques Pures et Appliquees, 101 (3)(2014), 330-371.
[7]Zhengzheng Chen, Lin He, Huijiang Zhao, Nonlinear stability of travelling wave solutions to the one-dimensional compressible fluid models of Korteweg type ,Journal of Mathematical Analysis and Applications,422 (2) (2015), 1213-1234.
[6]Zhengzheng Chen, Linjie Xiong, Yijie Meng,Convergence to the superposition of rarefaction waves and conatct discontinuityfor the 1-D compressible Navier-Stokes-Korteweg system,Journal of Mathematical Analysis and Applications, 412(2)(2014), 646-663.
[5]Zhengzheng Chen,Asymptotic stability of strong rarefaction wavesfor thecompressible fluid models of Korteweg type,Journal of Mathematical Analysis and Applications,394 (1)(2012), 438-448.
[4]Zhengzheng Chen,Qinghua Xiao, Nonlinearstability ofviscous conatctwavefor the 1-D compressible Navier-Stokes-Korteweg system,Mathematical Methods in the Applied Sciences,36 (17) (2013), 2265-2279.
[3]Zhengzheng Chen,Qinghua Xiao, Nonlinearstability ofplanar shock profiles for the generalizedKdv-Burgers equation in several dimensions system,Acta Mathematica Scientia, 36 (6) (2013), 1531-1550.
[2] Qinghua Xiao,Zhengzheng Chen, Degenerate boundary layer solutions tothe generalizedBBM-Burgers equation,Acta Mathematica Scientia, 32 (5) (2012), 1743-1758.
[1]Zhengzheng Chen,Weian Liu, Existence of some ellipticsystems involving the Pucci operator,Acta Mathematics Sinica, 55(1) (2012), 77-90.










相关话题/安徽大学 数学