删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

安徽师范大学数学计算机科学学院导师介绍:任永

安徽师范大学 免费考研网/2014-03-31

安徽师范大学数学计算机科学学院导师介绍:任永
2012-07-27


  姓名:任永
  性别:男
  出生年月:1976年1月
  职称:教授
  学院:数学计算机科学学院
  研究方向:

  个人简介
  任永,男,汉族,1976年1月生,安徽霍邱人,中共党员,理学博士,澳大利亚塔斯马尼亚大学博士后研究员,教授,硕士生导师,安徽师范大学运筹学与控制论二级学科硕士点和统计学一级学科硕士点负责人,安徽省学术和技术带头人,安徽省高校省级教坛新秀,霍英东教育基金会第十二届高等院校青年教师奖获得者,主要从事随机微分方程及其应用研究工作,E-mail:renyong@126.com
  
  所受教育
  1991、9-1994、6 霍邱一中读高中
  1994、9-1998、7 安徽师范大学数学系读本科,获理学学士学位
  2000、9-2003、6 安徽师范大学数学系读硕士,获理学硕士学位,研究方向: 无穷粒子系统,导师:丁万鼎教授、祝东进教授
  2003、9-2006、6 华东理工大学数学系读博士,获理学博士学位,研究方向: 随机微分方程及其应用,导师:夏宁茂教授
  2008、5- 2010.5 澳大利亚Tasmania大学博士后研究员,合作导师:Dr Malgorzata O'Reilly
  
  职称职位
  1998、7-2003、11 安徽师范大学助教
  2003、11-2006、7 安徽师范大学讲师
  2006、7-2009、11 安徽师范大学副教授(破格)
  2009、12起 安徽师范大学教授(破格)
  2008、5- 2010.5 澳大利亚Tasmania大学博士后研究员

  研究领域
  倒向随机微分方程、泛函型(随机)微分系统及其能控性、随机流模型
  
  讲授课程
  本科生:概率论与数理统计、高等数学
  研究生:随机分析初步、随机微分方程
  
  主持的科研项目
  1.安徽省杰出青年基金:由G-布朗运动驱动的随机微分方程研究(1108085J08),2012.1—2013.12,经费:15万元
  2.国家自然科学基金:由Lévy过程驱动的几类倒向随机微分方程研究(10901003),2010.1—2012.12,经费:16万元
  3.教育部科学技术研究重点项目:由Lévy过程驱动的随机偏泛函微分系统能控性问题研究(211077),2011.1—2013.12,经费:15万元
  4.安徽省自然科学基金青年项目:多值倒向双重随机微分方程研究(10040606Q30),2011.1—2013.12,经费:4万元
  5.安徽省高校省级自然科学研究重大项目:无穷时滞脉冲微分系统及其可控性研究(KJ2010ZD02),2010.1—2012.12(与安徽大学数学科学学院院长蒋威教授联合申请),经费:5万元
  6.国家自然科学基金数学天元青年基金项目:反射型倒向随机微分方程及其应用(10726075),2008.1—2008.12,经费:3万元
  7.安徽省高校省级自然科学研究项目:非Lipschitz条件下随机微分方程研究(2006KJ251B),2006.1—2006.12,经费:0.8万元
  8.安徽省高等学校青年教师科研资助计划项目:随机微分方程的边值问题及在金融中的应用(2004jq116),2004.1—2006.1,经费:0.7万元
  
  论文
  在Acta Applicandae Mathematicae, ANZIAM J., Applied Mathematics and Computation, C.R.Acad.Sci.Paris, Ser.I., Integral Equations and Operator Theory,Journal of Computational and Applied Mathematics, Journal of Mathematical Physics, Journal of Optimization Theory and Applications, Mathematical and Computer Modelling, Modern Physics Letters B, Nonlinear Analysis: Real World Applications,Statistics & Probability Letters,Semigroup Forum以及Stochastic Analysis and Applications等10余种SCI期刊发表研究论文30余篇。
  部分论文(以下通讯作者用“﹡”注明)
  倒向随机微分方程
  [1] Ren Yong﹡,Xia Ningmao,Generalized reflected BSDE and an obstacle problem for PDEs with a nonlinear Neumann boundary condition,Stochastic Analysis and Applications 24 (2006) 1013—1033
  [2] Ren Yong﹡,Hu Lanying, Reflected backward stochastic differential equations driven by Lévy processes,Statistics & Probability Letters 77 (2007) 1599—1566
  [3] Ren Yong﹡, Lin Aihong,Hu Lanying, Stochastic PDIEs and backward doubly stochastic differential equations driven by Lévy processes, Journal of Computational and Applied Mathematics 223 (2009) 701—709
  [4] Ren Yong﹡,Fan Xiliang, Reflected backward stochastic differential equations driven by a Lévy process,ANZIAM J.50 (2009) 486—500
  [5] Ren Yong,On solutions of backward stochastic Volterra integral equations with jumps in Hilbert spaces,Journal of Optimization Theory and Applications 144 (2010) 319—333
  [6] Ren Yong﹡ Mohamed EL Otmani, Generalized reflected BSDEs driven by a Lévy process and an obstacle problem for PDIEs with a nonlinear Neumann boundary condition, Journal of Computational and Applied Mathematics 233 (2010) 2027—2043
  [7] Ren Yong, Reflected backward doubly stochastic differential equations driven by a Lévy Process, C.R.Acad.Sci.Paris, Ser.I.348 (2010) 439—444
  [8] Ren Yong﹡,Hu Lanying, A note on the stochastic differential equations driven by G-Brownian motion,Statistics & Probability Letters 81 (2011) 580—585
  [9] Ren Yong﹡, Mohamed EL Otmani, Doubly reflected BSDEs driven by a Lévy process, Nonlinear Analysis: Real World Applications, doi:10.1016/j.nonrwa.2011.10.003, to appear
  [10] Ren Yong, Auguste Aman﹡, Multivalued stochastic partial differential-integral equations via backward doubly stochastic differential equations driven by a Lévy process, The African Diaspora Journal of Mathematics 13 (2012) 1—22
  [11] Hu Lanying,Ren Yong﹡,A note on the reflected backward stochastic differential equations driven by a Lévy process with stochastic Lipschitz condition,Applied Mathematics and Computation 218 (2011) 4325—4332
  [12] Hu Lanying,Ren Yong﹡,Stochastic PDIEs with nonlinear Neumann boundary conditions and generalized backward doubly stochastic differential equations driven by Lévy processes,Journal of Computational and Applied Mathematics 229 (2009) 230—239
  [13] Fan Xiliang,Ren Yong﹡,Zhu Dongjin, A note on the doubly reflected backward stochastic differential equations driven by a Lévy process, Statistics & Probability Letters 80 (2010) 690—696
  [14] Zhou Qing﹡, Ren Yong, Wu Weixing, On solutions to backward stochastic partial differential equations for Lévy processes, Journal of Computational and Applied Mathematics, 235 (2011) 5411—5421
  [15] 范锡良,任永,由Lévy过程驱动的反射型倒向随机微分方程,数学学报 54(2011)839—852
   泛函型随机微分方程及其能控性
  [1] Ren Yong﹡, Lu Shiping,Xia Ningmao,Remarks on the existence and uniqueness of solutions to stochastic functional differential equations with infinite delay,Journal of Computational and Applied Mathematics 220 (2008) 364—372
  [2] Ren Yong﹡,Xia Ningmao,Existence, uniqueness and stability of solutions to neutral stochastic functional differential equations with infinite delay,Applied Mathematics and Computation 210 (2009) 72—79
  [3] Ren Yong﹡, Xia Ningmao,A note on the existence and uniqueness of the solution to neutral stochastic functional differential equations with infinite delay,Applied Mathematics and Computation 214 (2009) 457—461
  [4] Ren Yong﹡, Chen Li,A note on the neutral stochastic functional differential equations with infinite delay and Poisson jumps in an abstract space, Journal of Mathematical Physics 50 (2009) 082704
  [5] Ren Yong﹡, Sun Dandan, Second-order neutral impulsive stochastic evolution equations with delay, Journal of Mathematical Physics 50 (2009) 102709
  [6] Ren Yong﹡, Sun Dandan, Second order neutral stochastic evolution equations with infinite delay under Carathéodory conditions,Journal of Optimization Theory and Applications 147 (2010) 569—582
  [7] Ren Yong,Hu Lanying,R.Saktivel﹡,Controllability of impulsive neutral stochastic functional differential inclusions with infinite delay, Journal of Computational and Applied Mathematics, 235 (2011) 2603—2614
  [8] Ren Yong﹡,Zhou Qing,Chen Li,Existence, uniqueness and stability of mild solutions for time-dependent evolution equations with Poisson jumps and infinite delay, Journal of Optimization Theory and Applications, 149 (2011) 315—331
  [9] Nikolaos Halidias,Ren Yong﹡, An existence theorem for stochastic functional differential equations with delays under weak assumptions,Statistics & Probability Letters 78 (2008) 2864—2867
  [10] R.Sakthivel﹡,Yong Ren, N.I.Mahmudov, Approximate controllability of second order stochastic differential equations with impulsive effects, Modern Physics Letters B 24(2010)1559—1572
  [11] Hu Lanying,Ren Yong﹡,Doubly perturbed neutral stochastic functional equations,Journal of Computational and Applied Mathematics 231 (2009) 319—326
  [12] Hu Lanying, Ren Yong﹡,Existence results for impulsive neutral stochastic functional integro-differential equations with infinite delays, Acta Applicandae Mathematicae 111 (2010) 303—317
  [13] Lin Aihong, Ren Yong﹡,Xia Ningmao, On neutral impulsive stochastic integro-differential equations with infinite delays via fractional operators, Mathematical and Computer Modelling 51 (2010) 413—424
  [14] R.Sakthivel﹡, Yong Ren, Hyunsoo Kim, Asymptotic stability of second-order neutral stochastic differential equations, Journal of Mathematical Physics 51 (2010) 052701
  [15] R.Sakthivel, Yong Ren﹡, Complete controllability of stochastic evolution equations with jumps, Report on Mathematical Physics 68 (2011) 163—173
  泛函微分方程及其可控性
  [1] Ren Yong﹡, Qin Yan, R.Saktivel, Existence results for fractional order semilinear integro-differential evolution equations with infinite delay, Integral Equations and Operator Theory 67 (2010) 33—49
  [2] Hu Lanying, Ren Yong﹡,R.Sakthivel, Existence and uniqueness of mild solutions for semilinear integro-differential equations of fractional order with nonlocal initial conditions and delays, Semigroup Forum 79 (2009) 507—514
  [3] R.Sakthivel, N.I.Mahmudov, Yong Ren﹡, Approximate controllability of the nonlinear third-order dispersion equation, Applied Mathematics and Computation 217 (2011) 8507—8511
  [4] R.Sakthivel, Yong Ren﹡, N.I.Mahmudov, Approximate controllability of semilinear fractional differential systems, Computer and Mathematics with Applications 62 (2011) 1451—1459
  
  所获奖励
  1.2004年 安徽师范大学优秀教学二等奖
  2.2005年 宝钢教育基金理事会优秀学生奖
  3.2008年 安徽省高校省级教坛新秀奖
  4.2010年 霍英东教育基金会第十二届高等院校青年教师奖
  5.2010年 安徽省第六届自然科学优秀学术论文二等奖
  6.2010年 安徽省省级教学成果三等奖(第一完成人)
  人才称号
  1.2008年-2010年被聘为安徽师范大学学科建设关键教授岗位
  2.2010年被遴选为安徽省学术和技术带头人后备人选
  3.2011年被遴选为安徽省学术和技术带头人
  国内外研究和访学经历
  1.2008.5—2010.5 澳大利亚塔斯马尼亚大学博士后
  2.2010.11.19—11.28 韩国成均馆大学
  3.2011.3—2011.6 山东大学彭实戈院士课题组
  *如果发现导师信息存在错误或者偏差,欢迎随时与我们联系,以便进行更新完善。联系方式





相关话题/安徽师范大学